The search session has expired. Please query the service again.

Displaying 21 – 40 of 87

Showing per page

Index for subgroups of the group of units in number fields

Tsutomu Shimada (1998)

Acta Arithmetica

We define a sequence of rational integers u i ( E ) for each finite index subgroup E of the group of units in some finite Galois number fields K in which prime p ramifies. For two subgroups E’ ⊂ E of finite index in the group of units of K we prove the formula v p ( [ E : E ' ] ) = i = 1 r u i ( E ' ) - u i ( E ) . This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].

Index form equations in quintic fields

István Gaál, Kálmán Győry (1999)

Acta Arithmetica

The problem of determining power integral bases in algebraic number fields is equivalent to solving the corresponding index form equations. As is known (cf. Győry [25]), every index form equation can be reduced to an equation system consisting of unit equations in two variables over the normal closure of the original field. However, the unit rank of the normal closure is usually too large for practical use. In a recent paper Győry [27] succeeded in reducing index form equations to systems of unit...

Indice des unités elliptiques dans les p -extensions

Hassan Oukhaba (2007)

Bulletin de la Société Mathématique de France

Nous comparons le comportement dans les p -extensions du nombre de classes d’idéaux avec le comportement de l’indice du groupe des unités elliptiques de Rubin.

Indices of subfields of cyclotomic ℤₚ-extensions and higher degree Fermat quotients

Yoko Inoue, Kaori Ota (2015)

Acta Arithmetica

We consider the indices of subfields of cyclotomic ℤₚ-extensions of number fields. For the nth layer Kₙ of the cyclotomic ℤₚ-extension of ℚ, we find that the prime factors of the index of Kₙ/ℚ are those primes less than the extension degree pⁿ which split completely in Kₙ. Namely, the prime factor q satisfies q p - 1 1 ( m o d p n + 1 ) , and this leads us to consider higher degree Fermat quotients. Indices of subfields of cyclotomic ℤₚ-extensions of a number field which is cyclic over ℚ with extension degree a prime different...

Inégalités sur la mesure de Mahler d'un polynôme

V. Flammang (1997)

Journal de théorie des nombres de Bordeaux

Dans cet article, nous donnons une minoration de la mesure de Mahler d'un polynôme à coefficients entiers, dont toutes les racines sont d'une part réelles positives, d'autre part réelles, en fonction de la valeur de ce polynôme en zéro. Ces minorations améliorent des résultats antérieurs de A. Schinzel. Par ailleurs, nous en déduisons des inégalités de M.-J. Bertin, liant la mesure d'un nombre algébrique à sa norme.

Currently displaying 21 – 40 of 87