Displaying 41 – 60 of 267

Showing per page

The Cohen-Lenstra heuristics, moments and p j -ranks of some groups

Christophe Delaunay, Frédéric Jouhet (2014)

Acta Arithmetica

This article deals with the coherence of the model given by the Cohen-Lenstra heuristic philosophy for class groups and also for their generalizations to Tate-Shafarevich groups. More precisely, our first goal is to extend a previous result due to É. Fouvry and J. Klüners which proves that a conjecture provided by the Cohen-Lenstra philosophy implies another such conjecture. As a consequence of our work, we can deduce, for example, a conjecture for the probability laws of p j -ranks of Selmer groups...

The conductor of a cyclic quartic field using Gauss sums

Blair K. Spearman, Kenneth S. Williams (1997)

Czechoslovak Mathematical Journal

Let Q denote the field of rational numbers. Let K be a cyclic quartic extension of Q . It is known that there are unique integers A , B , C , D such that K = Q A ( D + B D ) , where A is squarefree and odd , D = B 2 + C 2 is squarefree , B > 0 , C > 0 , G C D ( A , D ) = 1 . The conductor f ( K ) of K is f ( K ) = 2 l | A | D , where l = 3 , if D 2 ( mod 4 ) or D 1 ( mod 4 ) , B 1 ( mod 2 ) , 2 , if D 1 ( mod 4 ) , B 0 ( mod 2 ) , A + B 3 ( mod 4 ) , 0 , if D 1 ( mod 4 ) , B 0 ( mod 2 ) , A + B 1 ( mod 4 ) . A simple proof of this formula for f ( K ) is given, which uses the basic properties of quartic Gauss sums.

The correction factor in Artin's primitive root conjecture

Peter Stevenhagen (2003)

Journal de théorie des nombres de Bordeaux

In 1927, E. Artin proposed a conjectural density for the set of primes p for which a given integer g is a primitive root modulo p . After computer calculations in 1957 by D. H. and E. Lehmer showed unexpected deviations, Artin introduced a correction factor to explain these discrepancies. The modified conjecture was proved by Hooley in 1967 under assumption of the generalized Riemann hypothesis. This paper discusses two recent developments with respect to the correction factor. The first is of historical...

The cubics which are differences of two conjugates of an algebraic integer

Toufik Zaimi (2005)

Journal de Théorie des Nombres de Bordeaux

We show that a cubic algebraic integer over a number field K , with zero trace is a difference of two conjugates over K of an algebraic integer. We also prove that if N is a normal cubic extension of the field of rational numbers, then every integer of N with zero trace is a difference of two conjugates of an integer of N if and only if the 3 - adic valuation of the discriminant of N is not 4 .

The cyclic subfield integer index

Bart de Smit (2000)

Journal de théorie des nombres de Bordeaux

In this note we consider the index in the ring of integers of an abelian extension of a number field K of the additive subgroup generated by integers which lie in subfields that are cyclic over K . This index is finite, it only depends on the Galois group and the degree of K , and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction term...

Currently displaying 41 – 60 of 267