Exemples de plongements d'extensions galoisiennes
We give an explicit construction of an integral basis for a radical function field , where , under the assumptions and . The field discriminant of is also computed. We explain why these questions are substantially easier than the corresponding ones in number fields. Some formulae for the -signatures of a radical function field are also discussed in this paper.
Let be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form whose ideal class group has an element of order . This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.