Displaying 1021 – 1040 of 3426

Showing per page

Factoring polynomials over global fields

Karim Belabas, Mark van Hoeij, Jürgen Klüners, Allan Steel (2009)

Journal de Théorie des Nombres de Bordeaux

We prove that van Hoeij’s original algorithm to factor univariate polynomials over the rationals runs in polynomial time, as well as natural variants. In particular, our approach also yields polynomial time complexity results for bivariate polynomials over a finite field.

Factorisability and wildly ramified Galois extensions

David J. Burns (1991)

Annales de l'institut Fourier

Let L / K be an abelian extension of p -adic fields, and let 𝒪 denote the valuation ring of K . We study ideals of the valuation ring of L as integral representations of the Galois group Gal ( L / K ) . Assuming K is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an 𝒪 -order in the group algebra K [ Gal ( l / K ) ] . We obtain several general and also explicit new results.

Factorization in Krull monoids with infinite class group

Florian Kainrath (1999)

Colloquium Mathematicae

Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥2 there exists some h ∈ H such that the following are equivalent: (i) h has a representation h = u 1 · . . . · u k for some irreducible elements u i , (ii) k ∈ L.

Familles d’extensions de corps de nombres l -rationnels

Florence Soriano (1996)

Journal de théorie des nombres de Bordeaux

Dans cet article, nous déterminons et classifions toutes les extensions cycliques de degré l de corps de nombres Ł -rationnels contenant une racine primitive l -ième de l’unité. (Cette notion est plus générale que celle de l -régularité étudiée dans un travail antérieur).

Fast computation of class fields given their norm group

Loïc Grenié (2008)

Journal de Théorie des Nombres de Bordeaux

Let K be a number field containing, for some prime , the -th roots of unity. Let L be a Kummer extension of degree of K characterized by its modulus 𝔪 and its norm group. Let K 𝔪 be the compositum of degree extensions of K of conductor dividing 𝔪 . Using the vector-space structure of Gal ( K 𝔪 / K ) , we suggest a modification of the rnfkummer function of PARI/GP which brings the complexity of the computation of an equation of L over K from exponential to linear.

Currently displaying 1021 – 1040 of 3426