On Cramér's theorem for general Euler products with functional equation.
We give a family of -polynomials with integer coefficients whose splitting fields over are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.
Let α, β and γ be algebraic numbers of respective degrees a, b and c over ℚ such that α + β + γ = 0. We prove that there exist algebraic numbers α₁, β₁ and γ₁ of the same respective degrees a, b and c over ℚ such that α₁ β₁ γ₁ = 1. This proves a previously formulated conjecture. We also investigate the problem of describing the set of triplets (a,b,c) ∈ ℕ³ for which there exist finite field extensions K/k and L/k (of a fixed field k) of degrees a and b, respectively, such that the degree of the...
Let M be a commutative cancellative monoid. The set Δ(M), which consists of all positive integers which are distances between consecutive factorization lengths of elements in M, is a widely studied object in the theory of nonunique factorizations. If M is a Krull monoid with cyclic class group of order n ≥ 3, then it is well-known that Δ(M) ⊆ {1,..., n-2}. Moreover, equality holds for this containment when each class contains a prime divisor from M. In this note, we consider the question of determining...