Proof of a conjecture of Morris Newman.
Let L/K be a 2-birational CM-extension of a totally real 2-rational number field. We characterize in terms of tame ramification totally real 2-extensions K’/K such that the compositum L’=LK’ is still 2-birational. In case the 2-extension K’/K is linearly disjoint from the cyclotomic ℤ₂-extension , we prove that K’/K is at most quadratic. Furthermore, we construct infinite towers of such 2-extensions.
Soit une extension galoisienne à groupe de Galois métacyclique d’ordre ( divisant et ) possédant un sous-groupe distingué d’ordre . On note l’unique sous-corps de de degré sur , (resp. ) le clôture intégrale de dans (resp. ) et l’opérateur trace dans l’extension . On démontre que est un module localement libre sur l’anneau . On montre ensuite que l’idéal engendré par les résolvantes de Fröhlich associées à un caractère fidèle absolument irréductible de peut être...
We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group .
The main theorem gives necessary conditions and sufficient conditions for to have class number prime to 3. These conditions involve only the rational prime factorization of and congruences mod 27 of the prime factors of . They give necessary and sufficient conditions for most .