Displaying 81 – 100 of 113

Showing per page

Prime factors of class number of cyclotomic fields

Tetsuya Taniguchi (2008)

Journal de Théorie des Nombres de Bordeaux

Let p be an odd prime, r be a primitive root modulo p and r i r i ( mod p ) with 1 r i p - 1 . In 2007, R. Queme raised the question whether the -rank ( an odd prime p ) of the ideal class group of the p -th cyclotomic field is equal to the degree of the greatest common divisor over the finite field 𝔽 of x ( p - 1 ) / 2 + 1 and Kummer’s polynomial f ( x ) = i = 0 p - 2 r - i x i . In this paper, we shall give the complete answer for this question enumerating a counter-example.

Prime factors of values of polynomials

J. Browkin, A. Schinzel (2011)

Colloquium Mathematicae

We prove that for every quadratic binomial f(x) = rx² + s ∈ ℤ[x] there are pairs ⟨a,b⟩ ∈ ℕ² such that a ≠ b, f(a) and f(b) have the same prime factors and min{a,b} is arbitrarily large. We prove the same result for every monic quadratic trinomial over ℤ.

Principalization algorithm via class group structure

Daniel C. Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

For an algebraic number field K with 3 -class group Cl 3 ( K ) of type ( 3 , 3 ) , the structure of the 3 -class groups Cl 3 ( N i ) of the four unramified cyclic cubic extension fields N i , 1 i 4 , of K is calculated with the aid of presentations for the metabelian Galois group G 3 2 ( K ) = Gal ( F 3 2 ( K ) | K ) of the second Hilbert 3 -class field F 3 2 ( K ) of K . In the case of a quadratic base field K = ( D ) it is shown that the structure of the 3 -class groups of the four S 3 -fields N 1 , ... , N 4 frequently determines the type of principalization of the 3 -class group of K in N 1 , ... , N 4 . This provides...

Principe d’Heisenberg et fonctions positives

Jean Bourgain, Laurent Clozel, Jean-Pierre Kahane (2010)

Annales de l’institut Fourier

On décrit un problème naturel concernant la transformation de Fourier. Soient f , f ^ deux fonctions associées par celle-ci, positives pour x a et nulles en zéro. Quelle est la borne inférieure pour a  ? En dimension supérieure, même question, l’intervalle étant remplacé par la boule de rayon a . On montre l’existence d’une borne inférieure strictement positive, qui est estimée en fonction de la dimension. La dernière section montre que cette question est naturellement liée à la théorie des fonctions zêta....

Currently displaying 81 – 100 of 113