Hasse principle for Hopf maps.
In this article we shall give a survey of Hasse’s problem for integral power bases of algebraic number fields during the last half of century. Specifically, we developed this problem for the abelian number fields and we shall show several substantial examples for our main theorem [7] [9], which will indicate the actual method to generalize for the forthcoming theme on Hasse’s problem [15].
A simple calculation of the Hasse-Witt matrix is used to give examples of curves which are Kummer coverings of the projective line and which have easily determined p-rank. A family of curve carrying non-classical vector bundles of rank 2 is also given.
Einleitung. Eine klassische Konstruktion aus der algebraischen Zahlentheorie ist folgende: Zu jedem algebraischen Zahlkörper K kann man ein sogenanntes System idealer Zahlen S zuordnen, welches eine Untergruppe der multiplikativen Gruppe ℂ* der komplexen Zahlen ist derart, daß die Faktorgruppe S/K* in kanonischer Weise isomorph zu der Klassengruppe von K ist. Diese Konstruktion geht auf Hecke [5] zurück und hat folgende wichtige Eigenschaft, die auch bei dem Hilbertschen Klassenkörper zu K vorkommt:...
A result on the orders of the reductions of an element of the group of S-units of a number field is obtained by investigating three height functions for groups of S-units of number fields which are analogous to local, global and canonical height functions for elliptic curves.
We study the behavior of canonical height functions , associated to rational maps f, on totally p-adic fields. In particular, we prove that there is a gap between zero and the next smallest value of on the maximal totally p-adic field if the map f has at least one periodic point not contained in this field. As an application we prove that there is no infinite subset X in the compositum of all number fields of degree at most d such that f(X) = X for some non-linear polynomial f. This answers a...
Let be a zero of a polynomial of degree with odd coefficients, with not a root of unity. We show that the height of satisfiesMore generally, we obtain bounds when the coefficients are all congruent to modulo for some .
Let P be a unimodular polynomial of degree d-1. Then the height H(P²) of its square is at least √(d/2) and the product L(P²)H(P²), where L denotes the length of a polynomial, is at least d². We show that for any ε > 0 and any d ≥ d(ε) there exists a polynomial P with ±1 coefficients of degree d-1 such that H(P²) < (2+ε)√(dlogd) and L(P²)H(P²)< (16/3+ε)d²log d. A similar result is obtained for the series with ±1 coefficients. Let be the mth coefficient of the square f(x)² of a unimodular...
We prove inequalities that compare the size of an S-regulator with a product of heights of multiplicatively independent S-units. Our upper bound for the S-regulator follows from a general upper bound for the determinant of a real matrix proved by Schinzel. The lower bound for the S-regulator follows from Minkowski's theorem on successive minima and a volume formula proved by Meyer and Pajor. We establish similar upper bounds for the relative regulator of an extension l/k of number fields.
This paper concerns the arithmetic of certain -adic families of elliptic modular forms. We relate, using a formula of Rubin, some Iwasawa-theoretic aspects of the three items in the title of this paper. In particular, we examine several conjectures, three of which assert the non-triviality of an Euler system, a -adic regulator, and the derivative of a -adic -function. We investigate sufficient conditions for the first conjecture to hold and show that, under additional assumptions, the first...