Polynômes eulériens modulo
1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple of distinct elements of R is called a cycle of f if for i=0,1,...,k-2 and . The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number , depending only on the degree N of K. In this note we consider...
Let be a number field defined by an irreducible polynomial and its ring of integers. For every prime integer , we give sufficient and necessary conditions on that guarantee the existence of exactly prime ideals of lying above , where factors into powers of monic irreducible polynomials in . The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly prime ideals of lying above . We further specify...
We show that for a local, discretely valued field , with residue characteristic , and a variety over , the map to the outer automorphisms of the prime to geometric étale fundamental group of maps the wild inertia onto a finite image. We show that under favourable conditions depends only on the reduction of modulo a power of the maximal ideal of . The proofs make use of the theory of logarithmic schemes.
On donne des propriétés de la catégorie tannakienne des modules de Dieudonné filtrés sur un corps -adique (ces modules de Dieudonné jouent en -adique un rôle analogue aux structures de Hodge complexes). On prouve l’existence d’un foncteur fibre sur et la simple connexité du groupe associé. Ceci permet de montrer, sous la conjecture de Fontaine : “faiblement admissible entraîne admissible”, une conjecture de Rapoport et Zink décrivant le torseur entre cohomologie cristalline et étale, et de prouver...