Théorie d'Iwasawa des répresentations p-adiques sur un corps local (avec un appendice de J.-M. Fontaine).
L’auteur présente des applications élémentaires de la théorie du corps de classes de Kato et Parshin en dimensions 1 et 3 : calcul du conducteur d’une extension de Witt-Artin-Schreier d’un corps local de dimension 1, et étude des revêtements abéliens des surfaces.
Nous établissons les résultats fondamentaux de la théorie -adique globale du corps de classes pour les corps de nombres.
The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order . This result plays a clue role in the author’s proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol. 241, 2003, pp. 2-34.