-integral near-rings.
In questo lavoro si estende il concetto di campo di Hardy [Bou], al contesto dei germi di funzioni in più variabili che sono definite su insiemi semi-algebrici [Br.], [D.] e che risultano essere morfismi di categorie lisce [Pal.]. In tale contesto si dimostra che per ogni campo di Hardy di germi di una fissata categoria liscia , la sua chiusura algebrica relativa nell'anello , di tutti i germi nella stessa categoria liscia, è un campo di Hardy reale chiuso, che è l'unica chiusura reale del campo...
Einleitung. Eine klassische Konstruktion aus der algebraischen Zahlentheorie ist folgende: Zu jedem algebraischen Zahlkörper K kann man ein sogenanntes System idealer Zahlen S zuordnen, welches eine Untergruppe der multiplikativen Gruppe ℂ* der komplexen Zahlen ist derart, daß die Faktorgruppe S/K* in kanonischer Weise isomorph zu der Klassengruppe von K ist. Diese Konstruktion geht auf Hecke [5] zurück und hat folgende wichtige Eigenschaft, die auch bei dem Hilbertschen Klassenkörper zu K vorkommt:...
2000 Mathematics Subject Classification: 11S31 12E15 12F10 12J20.This paper gives a characterization of Henselian discrete valued fields whose finite abelian extensions are uniquely determined by their norm groups and related essentially in the same way as in the classical local class field theory. It determines the structure of the Brauer groups and character groups of Henselian discrete valued strictly primary quasilocal (or PQL-) fields, and thereby, describes the forms of the local reciprocity...
Let be a -adic local field with residue field such that and be a -adic representation of . Then, by using the theory of -adic differential modules, we show that is a Hodge-Tate (resp. de Rham) representation of if and only if is a Hodge-Tate (resp. de Rham) representation of where is a certain -adic local field with residue field the smallest perfect field containing .