On Stanley-Reisner rings
We consider analogies between the logically independent properties of strong going-between (SGB) and going-down (GD), as well as analogies between the universalizations of these properties. Transfer results are obtained for the (universally) SGB property relative to pullbacks and Nagata ring constructions. It is shown that if are domains such that is an LFD universally going-down domain and is algebraic over , then the inclusion map satisfies GB for each . However, for any nonzero ring...
A ring extension is said to be strongly affine if each -subalgebra of is a finite-type -algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if is a quasi-local ring of finite dimension, then is integrally closed and strongly affine if and only if is a Prüfer extension (i.e. is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let be...
For a symmetric (= invariant under the action of a compact Lie group G) semialgebraic basic set C, described by s polynomial inequalities, we show, that C can also be written by s + 1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number of inequalities only depending on the structure of G.
Let d be a k-derivation of k[x,y], where k is a field of characteristic zero. Denote by the unique extension of d to k(x,y). We prove that if ker d ≠ k, then ker = (ker d)0, where (ker d)0 is the field of fractions of ker d.
Let be a commutative ring with an identity different from zero and be a positive integer. Anderson and Badawi, in their paper on -absorbing ideals, define a proper ideal of a commutative ring to be an -absorbing ideal of , if whenever for , then there are of the ’s whose product is in and conjecture that for any ideal of an arbitrary ring , where . In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions...
We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.
Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of , then the set is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ 1, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM...