Sur trois coniques confocales deux à deux
The goal of this paper is at least two-fold. First we attempt to give a survey of some recent (and developed up to the time of the Banach Center workshop Parameter Spaces, February '94) applications of the theory of symmetric polynomials and divided differences to intersection theory. Secondly, taking this opportunity, we complement the story by either presenting some new proofs of older results (and this takes place usually in the Appendices to the present paper) or providing some new results which...
Nous développons une version de la théorie d’indice d’Atiyah pour les faisceaux cohérents sur les variétés algébriques lisses et l’utilisons pour attaquer certaines questions de J. Kollár.Soit une variété complexe compacte projective algébrique lisse et connexe. Nous prouvons que si est un diviseur nef et gros, tel que la restriction de à la fibre générale d’une application de Shafarevich est effective, est effectif.Soit une variété kählérienne compacte telle qu’il existe une classe...
We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve and the stability of the sheaf of logarithmic vector fields along , the freeness of the divisor and the Torelli properties of (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.
In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.