Stable rank 2 vector bundles on P3 with c1 = - 1, c2 = 2.
Soit un morphisme propre d’un -schéma intègre dans un germe de courbe algébrique lisse sur . On construit une structure de Hodge mixte sur les cohomologies évanescentes en résolvant les complexes évanescents et par des complexes de Hodge mixtes cohomologiques. Ceci donne une majoration du niveau d’unipotence de l’action de la monodromie.
Le but de cet article est de généraliser la théorie des foncteurs lisses de Grothendieck afin d’inclure dans ce cadre la théorie des catégories fibrées. On obtient en particulier une nouvelle caractérisation des catégories fibrées.
Using the flatification by blow-up result of Raynaud and Gruson, we obtain new results for submersive and subtrusive morphisms. We show that universally subtrusive morphisms, and in particular universally open morphisms, are morphisms of effective descent for the fibered category of étale morphisms. Our results extend and supplement previous treatments on submersive morphisms by Grothendieck, Picavet and Voevodsky. Applications include the universality of geometric quotients and the elimination...