Displaying 101 – 120 of 397

Showing per page

Failure of the Hasse principle for Châtelet surfaces in characteristic 2

Bianca Viray (2012)

Journal de Théorie des Nombres de Bordeaux

Given any global field k of characteristic 2 , we construct a Châtelet surface over k that fails to satisfy the Hasse principle. This failure is due to a Brauer-Manin obstruction. This construction extends a result of Poonen to characteristic 2 , thereby showing that the étale-Brauer obstruction is insufficient to explain all failures of the Hasse principle over a global field of any characteristic.

Families of hypersurfaces of large degree

Christophe Mourougane (2012)

Journal of the European Mathematical Society

Grauert and Manin showed that a non-isotrivial family of compact complex hyperbolic curves has finitely many sections. We consider a generic moving enough family of high enough degree hypersurfaces in a complex projective space. We show the existence of a strict closed subset of its total space that contains the image of all its sections.

Finite projective planes, Fermat curves, and Gaussian periods

Koen Thas, Don Zagier (2008)

Journal of the European Mathematical Society

One of the oldest and most fundamental problems in the theory of finite projective planes is to classify those having a group which acts transitively on the incident point-line pairs (flags). The conjecture is that the only ones are the Desarguesian projective planes (over a finite field). In this paper, we show that non-Desarguesian finite flag-transitive projective planes exist if and only if certain Fermat surfaces have no nontrivial rational points, and formulate several other equivalences involving...

Fonction zêta des hauteurs associée à une certaine surface cubique

Régis de la Bretèche, Peter Swinnerton-Dyer (2007)

Bulletin de la Société Mathématique de France

L’objet de cet article est d’obtenir une formule pour la fonction zêta des hauteurs classique à partir de la fonction zêta des hauteurs multiple de La Bretèche, et d’utiliser cette formule pour prolonger de manière méromorphe la fonction zêta des hauteurs. En particulier, il est montré que celle-ci peut être prolongée au demi-plan { s : e s > 3 4 } et que la frontière naturelle de son domaine naturel de méromorphie est { s : e s = 3 4 } .

Fonctions zêta des hauteurs

Régis de la Bretèche (2009)

Journal de Théorie des Nombres de Bordeaux

Ce papier présente les récents progrès concernant les fonctions zêta des hauteurs associées à la conjecture de Manin. En particulier, des exemples où on peut prouver un prolongement méromorphe de ces fonctions sont détaillés.

Generalised Hermite constants, Voronoi theory and heights on flag varieties

Bertrand Meyer (2009)

Bulletin de la Société Mathématique de France

This paper explores the study of the general Hermite constant associated with the general linear group and its irreducible representations, as defined by T. Watanabe. To that end, a height, which naturally applies to flag varieties, is built and notions of perfection and eutaxy characterising extremality are introduced. Finally we acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and computation relative to these constants.

Generators and integer points on the elliptic curve y² = x³ - nx

Yasutsugu Fujita, Nobuhiro Terai (2013)

Acta Arithmetica

Let E be an elliptic curve over the rationals ℚ given by y² = x³ - nx with a positive integer n. We consider first the case where n = N² for a square-free integer N. Then we show that if the Mordell-Weil group E(ℚ ) has rank one, there exist at most 17 integer points on E. Moreover, we show that for some parameterized N a certain point P can be in a system of generators for E(ℚ ), and we determine the integer points in the group generated by the point P and the torsion points. Secondly, we consider...

Géométrie, points entiers et courbes entières

Pascal Autissier (2009)

Annales scientifiques de l'École Normale Supérieure

Soit X une variété projective sur un corps de nombres K (resp. sur ). Soit H la somme de « suffisamment de diviseurs positifs » sur X . On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans X - H est non Zariski-dense.

Currently displaying 101 – 120 of 397