On the discriminant locus of an ample and spanned line bundle.
A.J. Sommese, M. Palleschi, A. Lanteri (1996)
Journal für die reine und angewandte Mathematik
M.L. Fania, M.C. Beltrametti (1992)
Forum mathematicum
A. Albano, A. Collino (1994)
Mathematische Annalen
Richard Taylor (1993)
Inventiones mathematicae
Andrew J. Sommese (1989)
Journal für die reine und angewandte Mathematik
Alexander Schmitt (1996)
Journal für die reine und angewandte Mathematik
Frédéric Campana (2004)
Annales de l’institut Fourier
This article gives a description, by means of functorial intrinsic fibrations, of the geometric structure (and conjecturally also of the Kobayashi pseudometric, as well as of the arithmetic in the projective case) of compact Kähler manifolds. We first define special manifolds as being the compact Kähler manifolds with no meromorphic map onto an orbifold of general type, the orbifold structure on the base being given by the divisor of multiple fibres. We next show that rationally connected Kähler...
Frédéric Campana (2004)
Annales de l’institut Fourier
For any compact Kähler manifold and for any equivalence relation generated by a symmetric binary relation with compact analytic graph in , the existence of a meromorphic quotient is known from Inv. Math. 63 (1981). We give here a simplified and detailed proof of the existence of such quotients, following the approach of that paper. These quotients are used in one of the two constructions of the core of given in the previous paper of this fascicule, as well as in many other questions.
S. Ramanan, H. Lange, C. Birkenhake (1993)
Manuscripta mathematica
Antonio Lanteri, Daniele Struppa (1987)
Compositio Mathematica
Laurent Bonavero, Andreas Höring (2007)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
In this paper we study the structure of manifolds that contain a quasi-line and give some evidence towards the fact that the irreducible components of degenerations of the quasi-line should determine the Mori cone. We show that the minimality with respect to a quasi-line yields strong restrictions on fibre space structures of the manifold.
S. Xambó (1982)
Collectanea Mathematica
János Kollár (1993)
Inventiones mathematicae
M. R. Gonzalez-Dorrego (2016)
Banach Center Publications
Let k be an algebraically closed field, char k = 0. Let C be an irreducible nonsingular curve such that rC = S ∩ F, r ∈ ℕ, where S and F are two surfaces and all the singularities of F are of the form , s ∈ ℕ. We prove that C can never pass through such kind of singularities of a surface, unless r = 3a, a ∈ ℕ. We study multiplicity-r structures on varieties r ∈ ℕ. Let Z be a reduced irreducible nonsingular (n-1)-dimensional variety such that rZ = X ∩ F, where X is a normal n-fold, F is a (N-1)-fold...
Wilson, P.M.H. (2006)
Experimental Mathematics
W. Fulton, S. Kleiman, R. Piene, H. Tai (1985)
Bulletin de la Société Mathématique de France
C.A.M. Peters (1988)
Mathematische Annalen
Laurent Bonavero (1996)
Bulletin de la Société Mathématique de France
Luc Pirio, Jean-Marie Trépreau (2013)
Bulletin de la Société Mathématique de France
Soit , , et des entiers. On introduit la classe des sous-variétés de dimension d’un espace projectif, telles que pour générique, il existe une courbe rationnelle normale de degré , contenue dans et passant par les points ; engendre un espace projectif dont la dimension, pour , et donnés, est la plus grande possible compte tenu de la première propriété. Sous l’hypothèse , on détermine toutes les variétés appartenant à la classe . On montre en particulier qu’il existe une...
Elvira Laura Livorni, Andrew John Sommese (1986)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze