Previous Page 8

Displaying 141 – 159 of 159

Showing per page

The Horrocks-Mumford bundle restricted to planes.

Ada Boralevi (2007)

Collectanea Mathematica

We study the behavior of the Horrocks-Mumford bundle FHM when restricted to a plane P2 ⊂ P4, looking for all possible minimal free resolutions for the restricted bundle. To each of the 6 resolutions (4 stable and 2 unstable) we find, we then associate a subvariety of the Grassmannian G(2,4) of planes in P4. We thus obtain a filtration of the Grassmannian, which we describe in the second part of this work.

[unknown]

Indranil Biswas, Carlos Florentino (0)

Annales de l’institut Fourier

Vanishing of sections of vector bundles on 0-dimensional schemes

Edoardo Ballico (1999)

Commentationes Mathematicae Universitatis Carolinae

Here we give conditions and examples for the surjectivity or injectivity of the restriction map H 0 ( X , F ) H 0 ( Z , F | Z ) , where X is a projective variety, F is a vector bundle on X and Z is a “general” 0 -dimensional subscheme of X , Z union of general “fat points”.

Variétés de modules alternatives

Jean-Marc Drezet (1999)

Annales de l'institut Fourier

Soit X une variété algébrique projective lisse irréductible. On appelle variété de modules fins de faisceaux sur X une famille de faisceaux cohérents sur X paramétrée par une variété intègre M , possédant les propriétés suivantes : est plate sur M ; pour tous x , y M distincts, les faisceaux x et y sur X ne sont pas isomorphes et est une déformation complète de x ; enfin possède une propriété universelle locale évidente. On a aussi la notion de variété de modules fins définie localement, où est...

Varieties with generically nef tangent bundles

Thomas Peternell (2012)

Journal of the European Mathematical Society

We study various "generic" nefness and ampleness notions for holomorphic vector bundles on a projective manifold. We apply this in particular to the tangent bundle and investigate the relation to the geometry of the manifold.

Vector bundles on non-Kaehler elliptic principal bundles

Vasile Brînzănescu, Andrei D. Halanay, Günther Trautmann (2013)

Annales de l’institut Fourier

We study relatively semi-stable vector bundles and their moduli on non-Kähler principal elliptic bundles over compact complex manifolds of arbitrary dimension. The main technical tools used are the twisted Fourier-Mukai transform and a spectral cover construction. For the important example of such principal bundles, the numerical invariants of a 3-dimensional non-Kähler elliptic principal bundle over a primary Kodaira surface are computed.

Currently displaying 141 – 159 of 159

Previous Page 8