Displaying 441 – 460 of 1685

Showing per page

Extension of maps defined on many fibres.

Miguel A. Barja, Juan Carlos Naranjo (1998)

Collectanea Mathematica

Let S be a fibred surface. We prove that the existence of morphisms from non countably many fibres to curves implies, up to base change, the existence of a rational map from S to another surface fibred over the same base reflecting the properties of the original morphisms. Under some conditions of unicity base change is not needed and one recovers exactly the initial maps.

Families of hypersurfaces of large degree

Christophe Mourougane (2012)

Journal of the European Mathematical Society

Grauert and Manin showed that a non-isotrivial family of compact complex hyperbolic curves has finitely many sections. We consider a generic moving enough family of high enough degree hypersurfaces in a complex projective space. We show the existence of a strict closed subset of its total space that contains the image of all its sections.

Families of smooth curves on surface singularities and wedges

Gérard Gonzalez-Sprinberg, Monique Lejeune-Jalabert (1997)

Annales Polonici Mathematici

Following the study of the arc structure of singularities, initiated by J. Nash, we give criteria for the existence of smooth curves on a surface singularity (S,O) and of smooth branches of its generic hypersurface section. The main applications are the following: the existence of a natural partition of the set of smooth curves on (S,O) into families, a description of each of them by means of chains of infinitely near points and their associated maximal cycle and the existence of smooth curves on...

Currently displaying 441 – 460 of 1685