Horikawa Surfaces with Maximal Picard Numbers.
We prove that Hori-Vafa mirror models for smooth Fano complete intersections in weighted projective spaces admit an interpretation as Laurent polynomials.
Let be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in . We also derive several new and several old results on the topology of ....
Etant donnés () des -modules non triviaux de dimensions respectives (avec ) et un -homomorphisme, nous montrons que l’hyperdéterminant de est nul sauf si les modules sont irréductibles et si l’homomorphisme est la multiplication des polynômes homogènes à deux variables.