Displaying 1281 – 1300 of 1685

Showing per page

Some surfaces with maximal Picard number

Arnaud Beauville (2014)

Journal de l’École polytechnique — Mathématiques

For a smooth complex projective variety, the rank ρ of the Néron-Severi group is bounded by the Hodge number h 1 , 1 . Varieties with ρ = h 1 , 1 have interesting properties, but are rather sparse, particularly in dimension 2 . We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.

Some topological conditions for projective algebraic manifolds with degenerate dual varieties: connections with 𝐏 -bundles

Antonio Lanteri, Daniele Struppa (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si illustrano alcune relazioni tra le varietà proiettive complesse con duale degenere, le varietà la cui topologia si riflette in quella della sezione iperpiana in misura maggiore dell'ordinario e le varietà fibrate in spazi lineari su di una curva.

Spaces of geometrically generic configurations

Yoel Feler (2008)

Journal of the European Mathematical Society

Let X denote either ℂℙ m or m . We study certain analytic properties of the space n ( X , g p ) of ordered geometrically generic n -point configurations in X . This space consists of all q = ( q 1 , , q n ) X n such that no m + 1 of the points q 1 , , q n belong to a hyperplane in X . In particular, we show that for a big enough n any holomorphic map f : n ( ℂℙ m , g p ) n ( ℂℙ m , g p ) commuting with the natural action of the symmetric group 𝐒 ( n ) in n ( ℂℙ m , g p ) is of the form f ( q ) = τ ( q ) q = ( τ ( q ) q 1 , , τ ( q ) q n ) , q n ( ℂℙ m , g p ) , where τ : n ( ℂℙ m , g p ) 𝐏𝐒𝐋 ( m + 1 , ) is an 𝐒 ( n ) -invariant holomorphic map. A similar result holds true for mappings of the configuration space n ( m , g p ) .

Specialization to the tangent cone and Whitney equisingularity

Arturo Giles Flores (2013)

Bulletin de la Société Mathématique de France

Let ( X , 0 ) be a reduced, equidimensional germ of an analytic singularity with reduced tangent cone ( C X , 0 , 0 ) . We prove that the absence of exceptional cones is a necessary and sufficient condition for the smooth part 𝔛 0 of the specialization to the tangent cone ϕ : 𝔛 to satisfy Whitney’s conditions along the parameter axis Y . This result is a first step in generalizing to higher dimensions Lê and Teissier’s result for hypersurfaces of 3 which establishes the Whitney equisingularity of X and its tangent cone under...

Currently displaying 1281 – 1300 of 1685