Threefolds of degree 9 and 10 in P5.
In a follow-up to our paper [Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631], we classify smooth complex projective threefolds Xwith −K X big and nef but not ample, Picard number γ(X) = 2, and whose anticanonical map is small. We assume also that the Mori contraction of X and of its flop X + are not both birational.
In this paper we study the global structure of projective threefolds X whose anticanonical bundle -KX is nef.
Let be any rational surface. We construct a tilting bundle on . Moreover, we can choose in such way that its endomorphism algebra is quasi-hereditary. In particular, the bounded derived category of coherent sheaves on is equivalent to the bounded derived category of finitely generated modules over a finite dimensional quasi-hereditary algebra . The construction starts with a full exceptional sequence of line bundles on and uses universal extensions. If is any smooth projective variety...
The paper is devoted to algebraic surfaces which can be obtained using a simple combinatorial procedure called the T-construction. The class of T-surfaces is sufficiently rich: for example, we construct T-surfaces of an arbitrary degree in RP³ which are M-surfaces. We also present a construction of T-surfaces in RP³ with dim H1 (RX; Z/2) > h1, 1(CX), where RX and CX are the real and the complex point sets of the surface.
1 Supported in part by the Norwegian Research Council for Science and the Humanities. It is a pleasure for this author to thank the Department of Mathematics of the University of Sofia for organizing the remarkable conference in Zlatograd during the period August 28-September 2, 1995. It is also a pleasure to thank the M.I.T. Department of Mathematics for its hospitality from January 1 to July 31, 1993, when this work was started. 2Supported in part by NSF grant 9400918-DMS.We introduce and study...