Canonical surfaces with and
The postulation of Aritméticamente Cohen-Macaulay (ACM) subschemes of the projective space PkN is well known in the case of codimension 2. There are many different ways of recording this numerical information: numerical character of Gruson/Peskine, h-vector, postulation character of Martin-Deschamps/Perrin... The first aim of this paper is to show the equivalence of these notions. The second and most important aim, is to study the postulation of codimension 3 ACM subschemes of PN. We use a result...
In this paper, I construct noncompact analogs of the Chern classes for equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the (topological) Euler characteristic of complete intersections in reductive groups. In the case where a complete intersection is a curve, this formula gives an explicit answer for the Euler characteristic and the genus of the curve. I also prove that the higher Chern classes vanish. The first...
We will consider codimension one holomorphic foliations represented by sections , and having a compact Kupka component . We show that the Chern classes of the tangent bundle of behave like Chern classes of a complete intersection 0 and, as a corollary we prove that is a complete intersection in some cases.
Étant donnée une variété kählérienne compacte , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type . Lorsque est projective, les traces de ces cônes sur l’espace de Néron–Severi engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
Lorsqu’un tore agit sur une variété algébrique complexe munie de la topologie transcendante, nous définissons la classe d’Euler -équivariante d’un point fixe isolé , qu’il soit lisse ou non. Cette classe est une fraction rationnelle à un nombre fini de variables et lorsque est rationnellement lisse dans , c’est un polynôme qui s’identifie canoniquement à la classe d’Euler équivariante usuelle, mais, réciproquement, lorsque la classe d’Euler équivariante est polynomiale, il n’est pas toujours...