Page 1

Displaying 1 – 5 of 5

Showing per page

Rank and perimeter preserver of rank-1 matrices over max algebra

Seok-Zun Song, Kyung-Tae Kang (2003)

Discussiones Mathematicae - General Algebra and Applications

For a rank-1 matrix A = a b t over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T(A) = U ⊗ A ⊗ V, or T ( A ) = U A t V with some monomial matrices U and V.

Row Hadamard majorization on 𝐌 m , n

Abbas Askarizadeh, Ali Armandnejad (2021)

Czechoslovak Mathematical Journal

An m × n matrix R with nonnegative entries is called row stochastic if the sum of entries on every row of R is 1. Let 𝐌 m , n be the set of all m × n real matrices. For A , B 𝐌 m , n , we say that A is row Hadamard majorized by B (denoted by A R H B ) if there exists an m × n row stochastic matrix R such that A = R B , where X Y is the Hadamard product (entrywise product) of matrices X , Y 𝐌 m , n . In this paper, we consider the concept of row Hadamard majorization as a relation on 𝐌 m , n and characterize the structure of all linear operators T : 𝐌 m , n 𝐌 m , n preserving (or...

Currently displaying 1 – 5 of 5

Page 1