The Cayley transform of Banach algebras.
Let be the algebra of all strictly upper triangular matrices over a unital commutative ring . A map on is called preserving commutativity in both directions if . In this paper, we prove that each invertible linear map on preserving commutativity in both directions is exactly a quasi-automorphism of , and a quasi-automorphism of can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings.
In this note we show that there are no ring anti-isomorphism between row finite matrix rings. As a consequence we show that row finite and column finite matrix rings cannot be either isomorphic or Morita equivalent rings. We also show that antiisomorphisms between endomorphism rings of infinitely generated projective modules may exist.