On certain non-constructive properties of infinite-dimensional vector spaces
In set theory without the axiom of choice (), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC (AC for linearly ordered families of nonempty sets)—and hence AC (AC for well-ordered families of nonempty sets)— (where is an uncountable regular cardinal), and “for every infinite set , there is a bijection ”, implies the statement “there exists a field such that every vector...