The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let V and W be matrices of size n × pk and qm × n, respectively. A necessary and sufficient condition is given for the existence of a triple (A,B,C) such that V a k-step reachability matrix of (A,B) andW an m-step observability matrix of (A,C).
In this short note we study necessary and sufficient conditions for the nonnegativity of the Moore-Penrose inverse of a real matrix in terms of certain spectral property shared by all positive splittings of the given matrix.
The paper gives a new characterization of eigenprojections, which is then used to obtain a spectral decomposition for the power bounded and exponentially bounded matrices. The applications include series and integral representations of the Drazin inverse, and investigation of the asymptotic behaviour of the solutions of singular and singularly perturbed differential equations. An example is given of localized travelling waves for a system of conservation laws.
Currently displaying 1 –
12 of
12