Page 1

Displaying 1 – 2 of 2

Showing per page

Weighted w -core inverses in rings

Liyun Wu, Huihui Zhu (2023)

Czechoslovak Mathematical Journal

Let R be a unital * -ring. For any a , s , t , v , w R we define the weighted w -core inverse and the weighted dual s -core inverse, extending the w -core inverse and the dual s -core inverse, respectively. An element a R has a weighted w -core inverse with the weight v if there exists some x R such that a w x v x = x , x v a w a = a and ( a w x ) * = a w x . Dually, an element a R has a weighted dual s -core inverse with the weight t if there exists some y R such that y t y s a = y , a s a t y = a and ( y s a ) * = y s a . Several characterizations of weighted w -core invertible and weighted dual s -core invertible...

When does the inverse have the same sign pattern as the transpose?

Carolyn A. Eschenbach, Frank J. Hall, Deborah L. Harrell, Zhongshan Li (1999)

Czechoslovak Mathematical Journal

By a sign pattern (matrix) we mean an array whose entries are from the set { + , - , 0 } . The sign patterns A for which every real matrix with sign pattern A has the property that its inverse has sign pattern A T are characterized. Sign patterns A for which some real matrix with sign pattern A has that property are investigated. Some fundamental results as well as constructions concerning such sign pattern matrices are provided. The relation between these sign patterns and the sign patterns of orthogonal matrices...

Currently displaying 1 – 2 of 2

Page 1