Generalization of Scott's permanent identity.
In this paper we prove that, up to a scalar multiple, the determinant is the unique generalized matrix function that preserves the product or remains invariant under similarity. Also, we present a new proof for the known result that, up to a scalar multiple, the ordinary characteristic polynomial is the unique generalized characteristic polynomial for which the Cayley-Hamilton theorem remains true.
In this paper, we discuss the scheduling of a wide class of transportation systems. In particular, we derive an algorithm to generate a regular schedule by using max-plus algebra. Inputs of this algorithm are a graph representing the road network of public transportation systems and the number of public vehicles in each route. The graph has to be strongly connected, which means there is a path from any vertex to every vertex. Let us remark that the algorithm is general in the sense that we can allocate...
The purpose of the Part I of this paper is to develop the geometry of Gram's determinants in Hilbert space. In Parts II and III a generalization is given of the Pythagorean theorem and triangular inequality for finite vector families.
A real matrix is a G-matrix if is nonsingular and there exist nonsingular diagonal matrices and such that , where denotes the transpose of the inverse of . Denote by a diagonal (signature) matrix, each of whose diagonal entries is or . A nonsingular real matrix is called -orthogonal if . Many connections are established between these matrices. In particular, a matrix is a G-matrix if and only if is diagonally (with positive diagonals) equivalent to a column permutation of...