Decay bounds and algorithms for approximating functions of sparse matrices.
Determinant formulas for special binary circulant matrices are derived and a new open problem regarding the possible determinant values of these specific circulant matrices is stated. The ideas used for the proofs can be utilized to obtain more determinant formulas for other binary circulant matrices, too. The superiority of the proposed approach over the standard method for calculating the determinant of a general circulant matrix is demonstrated.
This is a survey of recent results concerning (integer) matrices whose leading principal minors are well-known sequences such as Fibonacci, Lucas, Jacobsthal and Pell (sub)sequences. There are different ways for constructing such matrices. Some of these matrices are constructed by homogeneous or nonhomogeneous recurrence relations, and others are constructed by convolution of two sequences. In this article, we will illustrate the idea of these methods by constructing some integer matrices of this...
Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers F*1, F*2, . . . , F*n. In the present paper we calculate the determinant of ℱn in terms of complex Fibonacci numbers. Furthermore, we show that ℱn is invertible and obtain the entries of the inverse of ℱn in terms of complex Fibonacci numbers.
On présente ici une approche directe et géométrique pour le calcul des déterminants d’opérateurs de type Schrödinger sur un graphe fini. Du calcul de l’intégrale de Fresnel associée, on déduit le déterminant. Le calcul des intégrales de Fresnel est grandement facilité par l’utilisation simultanée du théorème de Fubini et d’une version linéaire du calcul symbolique des opérateurs intégraux de Fourier. On obtient de façon directe une formule générale exprimant le déterminant en terme des conditions...
An n by n skew-symmetric type (-1; 1)-matrix K =[ki;j ] has 1’s on the main diagonal and ±1’s elsewhere with ki;j =-kj;i . The largest possible determinant of such a matrix K is an interesting problem. The literature is extensive for n ≡ 0 mod 4 (skew-Hadamard matrices), but for n ≡ 2 mod 4 there are few results known for this question. In this paper we approach this problem constructing cocyclic matrices over the dihedral group of 2t elements, for t odd, which are equivalent to (-1; 1)-matrices...
The aim of this paper is to study determinants of matrices related to the Pascal triangle.