Matrices connected with Brauer's centralizer algebras.
MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthdayA connection between fractional calculus and statistical distribution theory has been established by the authors recently. Some extensions of the results to matrix-variate functions were also considered. In the present article, more results on matrix-variate statistical densities and their connections to fractional calculus will be established. When considering solutions of fractional...
is the category of spaces with filters: an object is a pair , a compact Hausdorff space and a filter of dense open subsets of . A morphism is a continuous function for which whenever . This category arises naturally from considerations in ordered algebra, e.g., Boolean algebra, lattice-ordered groups and rings, and from considerations in general topology, e.g., the theory of the absolute and other covers, locales, and frames, though we shall specifically address only one of these...
It is proved that the solution of the multiplicative Cauchy functional equation on the Lorentz cone of dimension greater than two is a power function of the determinant. The equation is solved in full generality, i.e. no smoothness assumptions on the unknown function are imposed. Also the functional equation of ratios, of a similar nature, is solved in full generality.
We solve the multiplicative Cauchy equation for real functions of symmetric positive definite matrices under the differentiability restriction. The specialty of the problem lies in the symmetry of the multiplication.