On spaces of matrices with a bounded number of eigenvalues.
If and are two families of unitary bases for , and is a fixed number, let and be subspaces of spanned by vectors in and respectively. We study the angle between and as goes to infinity. We show that when and arise in certain arithmetically defined families, the angles between and may either tend to or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.
Let Ω be the spectral unit ball of Mₙ(ℂ), that is, the set of n × n matrices with spectral radius less than 1. We are interested in classifying the automorphisms of Ω. We know that it is enough to consider the normalized automorphisms of Ω, that is, the automorphisms F satisfying F(0) = 0 and F'(0) = I, where I is the identity map on Mₙ(ℂ). The known normalized automorphisms are conjugations. Is every normalized automorphism a conjugation? We show that locally, in a neighborhood of a matrix with...
Let be the algebraic connectivity, and let be the Laplacian spectral radius of a -connected graph with vertices and edges. In this paper, we prove that with equality if and only if is the complete graph or . Moreover, if is non-regular, then where stands for the maximum degree of . Remark that in some cases, these two inequalities improve some previously known results.
In this note, we show how the determinant of the q-distance matrix Dq(T) of a weighted directed graph G can be expressed in terms of the corresponding determinants for the blocks of G, and thus generalize the results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85-88]. Further, by means of the result, we determine the determinant of the q-distance matrix of the graph obtained from a connected weighted graph...