Page 1 Next

Displaying 1 – 20 of 97

Showing per page

On a criterion of D-stability for P-matrices

Olga Y. Kushel (2016)

Special Matrices

In this paper, we study positive stability and D-stability of P-matrices.We introduce the property of Dθ-stability, i.e., the stability with respect to a given order θ. For an n × n P-matrix A, we prove a new criterion of D-stability and Dθ-stability, based on the properties of matrix scalings.

On a devil’s staircase associated to the joint spectral radii of a family of pairs of matrices

Ian D. Morris, Nikita Sidorov (2013)

Journal of the European Mathematical Society

The joint spectral radius of a finite set of real d × d matrices is defined to be the maximum possible exponential rate of growth of products of matrices drawn from that set. In previous work with K. G. Hare and J. Theys we showed that for a certain one-parameter family of pairs of matrices, this maximum possible rate of growth is attained along Sturmian sequences with a certain characteristic ratio which depends continuously upon the parameter. In this note we answer some open questions from that paper...

On bilinear forms based on the resolvent of large random matrices

Walid Hachem, Philippe Loubaton, Jamal Najim, Pascal Vallet (2013)

Annales de l'I.H.P. Probabilités et statistiques

Consider a N × n non-centered matrix 𝛴 n with a separable variance profile: 𝛴 n = D n 1 / 2 X n D ˜ n 1 / 2 n + A n . Matrices D n and D ˜ n are non-negative deterministic diagonal, while matrix A n is deterministic, and X n is a random matrix with complex independent and identically distributed random variables, each with mean zero and variance one. Denote by Q n ( z ) the resolvent associated to 𝛴 n 𝛴 n * , i.e. Q n ( z ) = 𝛴 n 𝛴 n * - z I N - 1 . Given two sequences of deterministic vectors ( u n ) and ( v n ) with bounded Euclidean norms, we study the limiting behavior of the random bilinear form: u n * Q n ( z ) v n z - + , as the dimensions...

On decomposition of k-tridiagonal ℓ-Toeplitz matrices and its applications

A. Ohashi, T. Sogabe, T.S. Usuda (2015)

Special Matrices

We consider a k-tridiagonal ℓ-Toeplitz matrix as one of generalizations of a tridiagonal Toeplitz matrix. In the present paper, we provide a decomposition of the matrix under a certain condition. By the decomposition, the matrix is easily analyzed since one only needs to analyze the small matrix obtained from the decomposition. Using the decomposition, eigenpairs and arbitrary integer powers of the matrix are easily shown as applications.

On distance Laplacian energy in terms of graph invariants

Hilal A. Ganie, Rezwan Ul Shaban, Bilal A. Rather, Shariefuddin Pirzada (2023)

Czechoslovak Mathematical Journal

For a simple connected graph G of order n having distance Laplacian eigenvalues ρ 1 L ρ 2 L ρ n L , the distance Laplacian energy DLE ( G ) is defined as DLE ( G ) = i = 1 n | ρ i L - 2 W ( G ) / n | , where W ( G ) is the Wiener index of G . We obtain a relationship between the Laplacian energy and the distance Laplacian energy for graphs with diameter 2. We obtain lower bounds for the distance Laplacian energy DLE ( G ) in terms of the order n , the Wiener index W ( G ) , the independence number, the vertex connectivity number and other given parameters. We characterize the extremal graphs...

On eigenvectors of mixed graphs with exactly one nonsingular cycle

Yi-Zheng Fan (2007)

Czechoslovak Mathematical Journal

Let G be a mixed graph. The eigenvalues and eigenvectors of G are respectively defined to be those of its Laplacian matrix. If G is a simple graph, [M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the eigenvectors of G corresponding to its second smallest eigenvalue (also called the algebraic connectivity of G ). For G being a general mixed graph with...

Currently displaying 1 – 20 of 97

Page 1 Next