Page 1

Displaying 1 – 13 of 13

Showing per page

Block diagonalization

Jaromír J. Koliha (2001)

Mathematica Bohemica

We study block diagonalization of matrices induced by resolutions of the unit matrix into the sum of idempotent matrices. We show that the block diagonal matrices have disjoint spectra if and only if each idempotent matrix in the inducing resolution double commutes with the given matrix. Applications include a new characterization of an eigenprojection and of the Drazin inverse of a given matrix.

Bound for the largest singular value of nonnegative rectangular tensors

Jun He, Yan-Min Liu, Hua Ke, Jun-Kang Tian, Xiang Li (2016)

Open Mathematics

In this paper, we give a new bound for the largest singular value of nonnegative rectangular tensors when m = n, which is tighter than the bound provided by Yang and Yang in “Singular values of nonnegative rectangular tensors”, Front. Math. China, 2011, 6, 363-378.

Bounds for the (Laplacian) spectral radius of graphs with parameter α

Gui-Xian Tian, Ting-Zhu Huang (2012)

Czechoslovak Mathematical Journal

Let G be a simple connected graph of order n with degree sequence ( d 1 , d 2 , ... , d n ) . Denote ( α t ) i = j : i j d j α , ( α m ) i = ( α t ) i / d i α and ( α N ) i = j : i j ( α t ) j , where α is a real number. Denote by λ 1 ( G ) and μ 1 ( G ) the spectral radius of the adjacency matrix and the Laplacian matrix of G , respectively. In this paper, we present some upper and lower bounds of λ 1 ( G ) and μ 1 ( G ) in terms of ( α t ) i , ( α m ) i and ( α N ) i . Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.

Bounds of the matrix eigenvalues and its exponential by Lyapunov equation

Guang-Da Hu, Taketomo Mitsui (2012)

Kybernetika

We are concerned with bounds of the matrix eigenvalues and its exponential. Combining the Lyapunov equation with the weighted logarithmic matrix norm technique, four sequences are presented to locate eigenvalues of a matrix. Based on the relations between the real parts of the eigenvalues and the weighted logarithmic matrix norms, we derive both lower and upper bounds of the matrix exponential, which complement and improve the existing results in the literature. Some numerical examples are also...

Bounds on Laplacian eigenvalues related to total and signed domination of graphs

Wei Shi, Liying Kang, Suichao Wu (2010)

Czechoslovak Mathematical Journal

A total dominating set in a graph G is a subset X of V ( G ) such that each vertex of V ( G ) is adjacent to at least one vertex of X . The total domination number of G is the minimum cardinality of a total dominating set. A function f : V ( G ) { - 1 , 1 } is a signed dominating function (SDF) if the sum of its function values over any closed neighborhood is at least one. The weight of an SDF is the sum of its function values over all vertices. The signed domination number of G is the minimum weight of an SDF on G . In this paper...

Bounds on the subdominant eigenvalue involving group inverses with applications to graphs

Stephen J. Kirkland, Neumann, Michael, Bryan L. Shader (1998)

Czechoslovak Mathematical Journal

Let A be an n × n symmetric, irreducible, and nonnegative matrix whose eigenvalues are λ 1 > λ 2 ... λ n . In this paper we derive several lower and upper bounds, in particular on λ 2 and λ n , but also, indirectly, on μ = max 2 i n | λ i | . The bounds are in terms of the diagonal entries of the group generalized inverse, Q # , of the singular and irreducible M-matrix Q = λ 1 I - A . Our starting point is a spectral resolution for Q # . We consider the case of equality in some of these inequalities and we apply our results to the algebraic connectivity of undirected...

Currently displaying 1 – 13 of 13

Page 1