Sur le théorème de Stein-Rosenberg
Previous Page 3
F. Musy, M. Charnay (1974)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Vlastimil Pták (1982)
Banach Center Publications
Soto, Ricardo L., Rojo, Oscar, Moro, Julio, Borobia, Alberto (2007)
ELA. The Electronic Journal of Linear Algebra [electronic only]
In-Jae Kim, Charles Waters (2010)
Czechoslovak Mathematical Journal
The inertia of an by symmetric sign pattern is called maximal when it is not a proper subset of the inertia of another symmetric sign pattern of order . In this note we classify all the maximal inertias for symmetric sign patterns of order , and identify symmetric sign patterns with maximal inertias by using a rank-one perturbation.
Previous Page 3