Normal forms of matrices in topoi
We prove that on , there is no n-supercyclic operator with 1 ≤ n < ⌊(N + 1)/2⌋, i.e. if has an n-dimensional subspace whose orbit under is dense in , then n is greater than ⌊(N + 1)/2⌋. Moreover, this value is optimal. We then consider the case of strongly n-supercyclic operators. An operator is strongly n-supercyclic if has an n-dimensional subspace whose orbit under T is dense in , the nth Grassmannian. We prove that strong n-supercyclicity does not occur non-trivially in finite...