The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

n-supercyclic and strongly n-supercyclic operators in finite dimensions

Romuald Ernst (2014)

Studia Mathematica

We prove that on N , there is no n-supercyclic operator with 1 ≤ n < ⌊(N + 1)/2⌋, i.e. if N has an n-dimensional subspace whose orbit under T ( N ) is dense in N , then n is greater than ⌊(N + 1)/2⌋. Moreover, this value is optimal. We then consider the case of strongly n-supercyclic operators. An operator T ( N ) is strongly n-supercyclic if N has an n-dimensional subspace whose orbit under T is dense in ( N ) , the nth Grassmannian. We prove that strong n-supercyclicity does not occur non-trivially in finite...

Currently displaying 1 – 5 of 5

Page 1