Page 1

Displaying 1 – 7 of 7

Showing per page

Unas notas sobre regularidad en matrices estocásticas.

J. L. Santos (1984)

Stochastica

Let P be a stochastic matrix. We give a necessary and sufficient condition for the existence of the limt -> ∞ ppt from which follows the classical regularity conditions. Another regularity condition based in the Banach point fix theorem is also given.

Unique decomposition for a polynomial of low rank

Edoardo Ballico, Alessandra Bernardi (2013)

Annales Polonici Mathematici

Let F be a homogeneous polynomial of degree d in m + 1 variables defined over an algebraically closed field of characteristic 0 and suppose that F belongs to the sth secant variety of the d-uple Veronese embedding of m into m + d d - 1 but that its minimal decomposition as a sum of dth powers of linear forms requires more than s summands. We show that if s ≤ d then F can be uniquely written as F = M d + + M t d + Q , where M , . . . , M t are linear forms with t ≤ (d-1)/2, and Q is a binary form such that Q = i = 1 q l i d - d i m i with l i ’s linear forms and m i ’s forms...

Universal bounds for positive matrix semigroups

Leo Livshits, Gordon MacDonald, Laurent Marcoux, Heydar Radjavi (2016)

Studia Mathematica

We show that any compact semigroup of positive n × n matrices is similar (via a positive diagonal similarity) to a semigroup bounded by √n. We give examples to show this bound is best possible. We also consider the effect of additional conditions on the semigroup and obtain improved bounds in some cases.

Currently displaying 1 – 7 of 7

Page 1