The search session has expired. Please query the service again.
For a block upper triangular matrix, a necessary and sufficient condition has been given to let it be the sum of block upper rectangular matrices satisfying certain rank constraints; see H. Bart, A. P. M. Wagelmans (2000). The proof involves elements from integer programming and employs Farkas' lemma. The algebra of block upper triangular matrices can be viewed as a matrix algebra determined by a pattern of zeros. The present note is concerned with the question whether the decomposition result referred...
An matrix with nonnegative entries is called row stochastic if the sum of entries on every row of is 1. Let be the set of all real matrices. For , we say that is row Hadamard majorized by (denoted by if there exists an row stochastic matrix such that , where is the Hadamard product (entrywise product) of matrices . In this paper, we consider the concept of row Hadamard majorization as a relation on and characterize the structure of all linear operators preserving (or...
Currently displaying 1 –
5 of
5