Schatten norms of Toeplitz matrices with Fisher--Hartwig singularities.
Let denote the space of infinite matrices for which for all with . We characterize the upper triangular positive matrices from , , by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.
In this paper we consider the problem of finding upper bounds of certain matrix operators such as Hausdorff, Nörlund matrix, weighted mean and summability on sequence spaces and Lorentz sequence spaces , which was recently considered in [9] and [10] and similarly to [14] by Josip Pecaric, Ivan Peric and Rajko Roki. Also, this study is an extension of some works by G. Bennett on spaces, see [1] and [2].
The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix polynomials...
The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the Hermite-Hermite...
Consider the set of all Toeplitz-Schur multipliers sending every upper triangular matrix from the trace class into a matrix with absolutely summable entries. We show that this set admits a description completely analogous to that of the set of all Fourier multipliers from H₁ into ℓ₁. We characterize the set of all Schur multipliers sending matrices representing bounded operators on ℓ₂ into matrices with absolutely summable entries. Next, we present a result (due to G. Pisier) that the upper triangular...
Let A stand for a Toeplitz operator with a continuous symbol on the Bergman space of the polydisk or on the Segal-Bargmann space over . Even in the case N = 1, the spectrum Λ(A) of A is available only in a few very special situations. One approach to gaining information about this spectrum is based on replacing A by a large “finite section”, that is, by the compression of A to the linear span of the monomials . Unfortunately, in general the spectrum of does not mimic the spectrum of A as...