Natural group actions on tensor products of three real vector spaces with finitely many orbits.
The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical computer science, for example, coding theory [15] and cryptology. In cryptology, binary fields and n-dimensional...
Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the - and -factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse -matrices with symmetric, irreducible, tridiagonal inverses.
A new lower bound and a new upper bound for the minimum eigenvalue of an 𝓜-tensor are obtained. It is proved that the new lower and upper bounds improve the corresponding bounds provided by He and Huang (J. Inequal. Appl., 2014, 2014, 114) and Zhao and Sang (J. Inequal. Appl., 2016, 2016, 268). Finally, two numerical examples are given to verify the theoretical results.
In this paper, we mainly use the properties of the minimum eigenvalue of the Fan product of -matrices and Cauchy-Schwarz inequality, and propose some new bounds for the minimum eigenvalue of the Fan product of two -matrices. These results involve the maximum absolute value of off-diagonal entries of each row. Hence, the lower bounds for the minimum eigenvalue are easily calculated in the practical examples. In theory, a comparison is given in this paper. Finally, to illustrate our results, a simple...
Some new bounds for the minimum eigenvalue of M-matrices are obtained. These inequalities improve existing results, and the estimating formulas are easier to calculate since they only depend on the entries of matrices. Finally, some examples are also given to show that the bounds are better than some previous results.
Some new criteria for identifying H-tensors are obtained. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are given. Advantages of results obtained are illustrated by numerical examples.
New iterative codes for identifying 𝓗 -tensor are obtained. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor, i.e., an even-degree homogeneous polynomial form are given. Advantages of results obtained are illustrated by numerical examples.
We prove that the principal eigenvector of a positive matrix represents the relative dominance of its rows or ranking of alternatives in a decision represented by the rows of a pairwise comparison matrix.
Our purpose is to present a number of new facts about the structure of semipositive matrices, involving patterns, spectra and Jordon form, sums and products, and matrix equivalence, etc. Techniques used to obtain the results may be of independent interest. Examples include: any matrix with at least two columns is a sum, and any matrix with at least two rows, a product, of semipositive matrices. Any spectrum of a real matrix with at least elements is the spectrum of a square semipositive matrix,...
In this paper we study -EP matrices, as a generalization of EP-matrices in indefinite inner product spaces, with respect to indefinite matrix product. We give some properties concerning EP and -EP matrices and find connection between them. Also, we present some results for reverse order law for Moore-Penrose inverse in indefinite setting. Finally, we deal with the star partial ordering and improve some results given in the “EP matrices in indefinite inner product spaces” (2012), by relaxing some...
We present new iterative methods for solving the Sylvester equation belonging to the class of SOR-like methods, based on the SOR (Successive Over-Relaxation) method for solving linear systems. We discuss convergence characteristics of the methods. Numerical experimentation results are included, illustrating the theoretical results and some other noteworthy properties of the Methods.