New trace bounds for the product of two matrices and their applications in the algebraic Riccati equation.
Soit un nombre de Pisot ; nous montrons que pour tout entier assez grand il existe une matrice carrée à coefficients positifs ou nuls dont l’ordre est égal au degré de et dont est valeur propre.Soit le -développement de ; si est un nombre de Pisot, alors la suite est périodique après un certain rang (pour , ) et le polynômeest appelé polynôme de Parry. Nous montrons qu’il existe un ensemble relativement dense d’entiers tels que le polynôme minimal de est égal à son polynôme...
Let , and be fixed complex numbers. Let be the Toeplitz matrix all of whose entries above the diagonal are , all of whose entries below the diagonal are , and all of whose entries on the diagonal are . For , each principal minor of has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of . We also show that all complex polynomials in are Toeplitz matrices. In particular, the inverse of is a Toeplitz matrix when...
Four applications are outlined of pseudospectra of highly nonnormal linear operators.
We prove that if F is a Lipschitz map from the set of all complex n × n matrices into itself with F(0) = 0 such that given any x and y we know that F(x) - F(y) and x-y have at least one common eigenvalue, then either or for all x, for some invertible n × n matrix u. We arrive at the same conclusion by supposing F to be of class ¹ on a domain in ℳₙ containing the null matrix, instead of Lipschitz. We also prove that if F is of class ¹ on a domain containing the null matrix satisfying F(0) = 0...
Let be an arbitrary parabolic subalgebra of a simple associative -algebra. The ideals of are determined completely; Each ideal of is shown to be generated by one element; Every non-linear invertible map on that preserves ideals is described in an explicit formula.
In this paper we prove that every bijection preserving Lie products from a triangular algebra onto a normal triangular algebra is additive modulo centre. As an application, we described the form of bijections preserving Lie products on nest algebras and block upper triangular matrix algebras.