Analytic Cliffordian functions.
Compositional data, multivariate observations that hold only relative information, need a special treatment while performing statistical analysis, with respect to the simplex as their sample space ([Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986.], [Aitchison, J., Greenacre, M.: Biplots of compositional data. Applied Statistics 51 (2002), 375–392.], [Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds): Compositional data analysis in the geosciences:...
The concept of supercomplex structure is introduced in the pseudo-Euclidean Hurwitz pairs and its basic algebraic and geometric properties are described, e.g. a necessary and sufficient condition for the existence of such a structure is found.
The algebraic formulation of Wick’s theorem that allows one to present the vacuum or thermal averages of the chronological product of an arbitrary number of field operators as a determinant (permanent) of the matrix is proposed. Each element of the matrix is the average of the chronological product of only two operators. This formulation is extremely convenient for practical calculations in quantum field theory, statistical physics, and quantum chemistry by the standard packages of the well known...
An S-type upper bound for the largest singular value of a nonnegative rectangular tensor is given by breaking N = {1, 2, … n} into disjoint subsets S and its complement. It is shown that the new upper bound is smaller than that provided by Yang and Yang (2011). Numerical examples are given to verify the theoretical results.
The Drazin inverse of matrices is applied to find the solutions of the state equations of descriptor fractional discrete-time systems with regular pencils. An equality defining the set of admissible initial conditions for given inputs is derived. The proposed method is illustrated by a numerical example.
We propose an adaptation of the partitioning method for determination of the Moore-Penrose inverse of a matrix augmented by a block-column matrix. A simplified implementation of the partitioning method on specific Toeplitz matrices is obtained. The idea for observing this type of Toeplitz matrices lies in the fact that they appear in the linear motion blur models in which blurring matrices (representing the convolution kernels) are known in advance. The advantage of the introduced method is a significant...