The structure of linear operators strongly preserving majorizations of matrices.
An explicit representation of the n-fold symmetric tensor product (equipped with a natural topology τ such as the projective, injective or inductive one) of the finite direct sum of locally convex spaces is presented. The formula for gives a direct proof of a recent result of Díaz and Dineen (and generalizes it to other topologies τ) that the n-fold projective symmetric and the n-fold projective “full” tensor product of a locally convex space E are isomorphic if E is isomorphic to its square .
The usual vector cross product of the three-dimensional Euclidian space is considered from an algebraic point of view. It is shown that many proofs, known from analytical geometry, can be distinctly simplified by using the matrix oriented approach. Moreover, by using the concept of generalized matrix inverse, we are able to facilitate the analysis of equations involving vector cross products.
We discuss how to find the well-covered dimension of a graph that is the Cartesian product of paths, cycles, complete graphs, and other simple graphs. Also, a bound for the well-covered dimension of Kn × G is found, provided that G has a largest greedy independent decomposition of length c < n. Formulae to find the well-covered dimension of graphs obtained by vertex blowups on a known graph, and to the lexicographic product of two known graphs are also given.
The Wigner Theorem states that the statistical distribution of the eigenvalues of a random Hermitian matrix converges to the semi-circular law as the dimension goes to infinity. It is possible to establish this result by using harmonic analysis on the Heisenberg group. In fact this convergence corresponds to the topology of the set of spherical functions associated to the action of the unitary group on the Heisenberg group.
Standard facts about separating linear functionals will be used to determine how two cones and and their duals and may overlap. When is linear and and are cones, these results will be applied to and , giving a unified treatment of several theorems of the alternate which explain when contains an interior point of . The case when is the space of Hermitian matrices, is the positive semidefinite matrices, and yields new and known results about the existence of block diagonal...