Theorie der linearen Formen mit ganzen Coefficienten.
In this note we show that there are no ring anti-isomorphism between row finite matrix rings. As a consequence we show that row finite and column finite matrix rings cannot be either isomorphic or Morita equivalent rings. We also show that antiisomorphisms between endomorphism rings of infinitely generated projective modules may exist.
Suppose has a 2-dimensional expanding subspace , satisfies a regularity condition, called “good star”, and has , where is an oriented compound of . A morphism of the free group on is called a non-abelianization of if it has structure matrix . We show that there is a tiling substitution whose “boundary substitution” is a non-abelianization of . Such a tiling substitution leads to a self-affine tiling of with as its expansion. In the last section we find conditions on so...
We give a classification of linear endomorphisms up to topological conjugacy.
Let be a differential (not necessarily commutative) algebra which carries a free action of a polynomial algebra with homogeneous generators . We show that for acyclic, the cohomology of the quotient