Displaying 101 – 120 of 234

Showing per page

On Solvable Generalized Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2006)

Annales de l’institut Fourier

We give an example of a compact 6-dimensional non-Kähler symplectic manifold ( M , κ ) that satisfies the Hard Lefschetz Condition. Moreover, it is showed that ( M , κ ) is a special generalized Calabi-Yau manifold.

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a Lie algebra...

Outer endomorphisms of free metabelian Lie algebras

Findik, Sehmus (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 17B01, 17B30, 17B40.Let Fm be the free metabelian Lie algebra of rank m over a field K of characteristic 0. We consider the semigroup IE(Fm) of the endomorphisms of Fm which are identical modulo the commutator ideal of Fm. We describe the factor semigroup of IE(Fm) modulo the congruence induced by the group of inner automorphisms.

Paramétrisation du dual d'une algèbre de Lie nilpotente

Pierre Bonnet (1988)

Annales de l'institut Fourier

Pour tout groupe de Lie nilpotent réel G connexe et simplement connexe, on construit une stratification du dual de l’algèbre de Lie, et on paramètre chaque strate au moyen d’un triplet ( λ , q , p ) de fonctions rationnelles à valeurs vectorielles; les valeurs de λ caractérisent les orbites de la strate et pour chacune de ces orbites, le couple ( q , p ) constitue une carte de Darboux.

Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras

K.K. Abdurasulov, A.Kh. Khudoyberdiyev, M. Ladra, A.M. Sattarov (2021)

Communications in Mathematics

In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly nilpotent....

Quasispectra of solvable Lie algebra homomorphisms into Banach algebras

Anar Dosiev (2006)

Studia Mathematica

We propose a noncommutative holomorphic functional calculus on absolutely convex domains for a Banach algebra homomorphism π of a finite-dimensional solvable Lie algebra 𝔤 in terms of quasispectra σ(π). In particular, we prove that the joint spectral radius of a compact subset in a solvable operator Lie subalgebra coincides with the geometric spectral radius with respect to a quasispectrum.

Currently displaying 101 – 120 of 234