On a Construction of Representations and a Problem of Enright.
Simple modules for restricted Lie superalgebras are studied. The indecomposability of baby Kac modules and baby Verma modules is proved in some situation. In particular, for the classical Lie superalgebra of type , the baby Verma modules are proved to be simple for any regular nilpotent -character and typical weight . Moreover, we obtain the dimension formulas for projective covers of simple modules with -characters of standard Levi form.
We study the invariants of the universal enveloping algebra of a Lie superalgebra with respect to a certain “twisted” adjoint action.
Given a principal ideal domain of characteristic zero, containing , and a connected differential non-negatively graded free finite type -module , we prove that the natural arrow is an isomorphism of graded Lie algebras over , and deduce thereby that the natural arrow is an isomorphism of graded cocommutative Hopf algebras over ; as usual, stands for free part, for homology, for free Lie algebra, and for universal enveloping algebra. Related facts and examples are also considered....
Let be a semisimple complex algebraic group and its flag variety. Let and let be its enveloping algebra. Let be a Cartan subalgebra of . For , let be the corresponding minimal primitive ideal, let , and let be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the -algebras . When is regular, Hodges has shown that . In this case is generated by the classes corresponding to...
We study some embeddings of suitably topologized spaces of vector-valued smooth functions on topological groups, where smoothness is defined via differentiability along continuous one-parameter subgroups. As an application, we investigate the canonical correspondences between the universal enveloping algebra, the invariant local operators, and the convolution algebra of distributions supported at the unit element of any finite-dimensional Lie group, when one passes from finite-dimensional Lie groups...