Ultra-irreducibility of induced representations.
We show that the tangent cone at the identity is not a complete quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian metric that is not locally quasiconformally equivalent to its tangent cone at the identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result is based on the study of Carnot groups that are rigid in the sense that their only quasiconformal maps...
On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension , il existe une constante telle que, pour tout ouvert proprement convexe , pour tout point , tout groupe discret engendré par un nombre fini d’automorphismes de qui déplacent le point de moins de est virtuellement nilpotent.
We study unbounded harmonic functions for a second order differential operator on a homogeneous manifold of negative curvature which is a semidirect product of a nilpotent Lie group N and A = ℝ⁺. We prove that if F is harmonic and satisfies some growth condition then F has an asymptotic expansion as a → 0 with coefficients from 𝓓'(N). Then we single out a set of at most two of these coefficients which determine F. Then using asymptotic expansions we are able to prove some theorems...
Soient un corps commutatif localement compact non archimédien et un caractère non trivial du groupe additif de . La correspondance de Langlands locale donne, pour chaque entier , une bijection de l’ensemble des classes d’isomorphisme de représentations de dimension du groupe de Weil-Deligne de sur l’ensemble des classes d’isomorphisme de représentations lisses irréductibles de . La bijection est donnée par la théorie locale du corps de classes, et pour , , on aNous prouvons...
Dans la théorie des représentations de (et ses formes intérieures) sur un corps local non-archimédien, nous disposons de deux classifications, dues à Zelevinsky et Langlands, construites à partir de certaines représentations segments et . Nous donnons une condition nécessaire et suffisante pour l’irréductibilité de l’induite parabolique des segments , . On en déduit des nouvelles conditions suffisantes pour l’irréductibilité d’une induite parabolique de représentations quelconques. Ce critère...
On montre que tout pseudogroupe d’isométries locales d’une variété riemannienne, qui est complet et fermé pour la topologie est un pseudogroupe de Lie. Ce résultat généralise au cas des pseudogroupes le théorème de S. Myers et N. Steenrod selon lequel le groupe des isométries d’une variété riemannienne est un groupe de Lie.
Nous montrons dans le cas simple du groupe linéaire général, comment on peut déduire de [V. Heiermann 2004] des informations précises sur le degré formel d’une représentation de carré intégrable d’un groupe -adique.