Displaying 1981 – 2000 of 2342

Showing per page

The Lie group of real analytic diffeomorphisms is not real analytic

Rafael Dahmen, Alexander Schmeding (2015)

Studia Mathematica

We construct an infinite-dimensional real analytic manifold structure on the space of real analytic mappings from a compact manifold to a locally convex manifold. Here a map is defined to be real analytic if it extends to a holomorphic map on some neighbourhood of the complexification of its domain. As is well known, the construction turns the group of real analytic diffeomorphisms into a smooth locally convex Lie group. We prove that this group is regular in the sense of Milnor. ...

The Poisson boundary of random rational affinities

Sara Brofferio (2006)

Annales de l’institut Fourier

We prove that in order to describe the Poisson boundary of rational affinities, it is necessary and sufficient to consider the action on real and all p -adic fileds.

Currently displaying 1981 – 2000 of 2342