Previous Page 13

Displaying 241 – 260 of 260

Showing per page

Asymptotic behavior of the invariant measure for a diffusion related to an NA group

Ewa Damek, Andrzej Hulanicki (2006)

Colloquium Mathematicae

On a Lie group NA that is a split extension of a nilpotent Lie group N by a one-parameter group of automorphisms A, the heat semigroup μ t generated by a second order subelliptic left-invariant operator j = 0 m Y j + Y is considered. Under natural conditions there is a μ ̌ t -invariant measure m on N, i.e. μ ̌ t * m = m . Precise asymptotics of m at infinity is given for a large class of operators with Y₀,...,Yₘ generating the Lie algebra of S.

Asymptotic spherical analysis on the Heisenberg group

Jacques Faraut (2010)

Colloquium Mathematicae

The asymptotics of spherical functions for large dimensions are related to spherical functions for Olshanski spherical pairs. In this paper we consider inductive limits of Gelfand pairs associated to the Heisenberg group. The group K = U(n) × U(p) acts multiplicity free on 𝓟(V), the space of polynomials on V = M(n,p;ℂ), the space of n × p complex matrices. The group K acts also on the Heisenberg group H = V × ℝ. By a result of Carcano, the pair (G,K) with G = K ⋉ H is a Gelfand pair. The main results...

Asymptotics of eigensections on toric varieties

A. Huckleberry, H. Sebert (2013)

Annales de l’institut Fourier

Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities | ϕ n | 2 = | s N | 2 / | | s N | | L 2 2 for eigensections s N Γ ( X , L N ) approaching a semiclassical ray. Here X is a normal compact toric variety and L is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate and Zelditch....

Asymptotics of sums of subcoercive operators

Nick Dungey, A. ter Elst, Derek Robinson (1999)

Colloquium Mathematicae

We examine the asymptotic, or large-time, behaviour of the semigroup kernel associated with a finite sum of homogeneous subcoercive operators acting on a connected Lie group of polynomial growth. If the group is nilpotent we prove that the kernel is bounded by a convolution of two Gaussians whose orders correspond to the highest and lowest orders of the homogeneous subcoercive components of the generator. Moreover we establish precise asymptotic estimates on the difference of the kernel and the...

Automorphismes analytiques d'un domaine de Reinhardt borné d'un espace de Banach à base

Jean-Pierre Vigué (1984)

Annales de l'institut Fourier

Dans cet article, j’étudie le groupe des automorphismes analytiques d’un domaine de Reinhardt borné d’un espace de Banach complexe à base. Je montre que, dans certains cas, ce groupe est un groupe de Lie banachique réel et je donne une classification complète des domaines de Reinhardt bornés homogènes. Pour certains espaces de Banach, je montre que les seuls automorphismes analytiques de la boule-unité ouverte sont linéaires.

Currently displaying 241 – 260 of 260

Previous Page 13