Bigèbres de Lie, doubles et carrés
Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that BZcan be decomposed into a controlled number of pieces, the restriction of f on each of which is quantitatively biLipschitz. This extends a result of [14], which proved the same result, but with the restriction that G has an appropriate discretization. We provide an example of a Carnot group not admitting such...
We obtain a blow-up theorem for regular submanifolds in the Heisenberg group, where intrinsic dilations are used. Main consequence of this result is an explicit formula for the density of (p+1)-dimensional spherical Hausdorff measure restricted to a p-dimensional submanifold with respect to the Riemannian surface measure. We explicitly compute this formula in some simple examples and we present a lower semicontinuity result for the spherical Hausdorff measure with respect to the weak convergence...
Let be an arbitrary hyperbolic geodesic metric space and let be a countable subgroup of the isometry group of . We show that if is non-elementary and weakly acylindrical (this is a weak properness condition) then the second bounded cohomology groups ,
We prove that the natural map from bounded to usual cohomology is injective if is an irreducible cocompact lattice in a higher rank Lie group. This result holds also for nontrivial unitary coefficients, and implies finiteness results for : the stable commutator length vanishes and any –action on the circle is almost trivial. We introduce the continuous bounded cohomology of a locally compact group and prove our statements by relating to the continuous bounded cohomology of the ambient group...
Let be the Lie group endowed with the Riemannian symmetric space structure. Let be a distinguished basis of left-invariant vector fields of the Lie algebra of and define the Laplacian . In this paper we consider the first order Riesz transforms and , for . We prove that the operators , but not the , are bounded from the Hardy space to . We also show that the second-order Riesz transforms are bounded from to , while the transforms and , for , are not.
We develop a new method to bound the hyperbolic and spherical Fourier coefficients of Maass forms defined with respect to arbitrary uniform lattices.