Complexity and rank double cones and tensor products decompositions.
Traitant la série de Poincaré d’un groupe discret d’isométries en courbure négative comme un noyau de Green, on établit une théorie du potentiel assez comparable à la théorie classique pour affirmer un parallèle entre densités conformes à la Patterson-Sullivan et densités harmoniques, et notamment définir une frontière de Martin où les densités ergodiques forment la partie minimale, et enfin l’identifier géométriquement sous hypothèse d’hyperbolicité.
We prove the composition and L²-boundedness theorems for the Nagel-Ricci-Stein flag kernels related to the natural gradation of homogeneous groups.
To each complex number is associated a representation of the conformal group on (spherical principal series). For three values , we construct a trilinear form on , which is invariant by . The trilinear form, first defined for in an open set of is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.
The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is studied. Local and global optimality of extremal trajectories is characterized. Lower and upper bounds on the first conjugate time are proved. The cut time is shown to be equal to the first Maxwell time corresponding to the group of discrete symmetries of the exponential mapping. Optimal synthesis on an open dense subset of the state space is described.
In this note we explain a way to associate to any number field some connected complex abelian Lie groups. Further, we study the case of non-totally real cubic number fields, and we see that they are intimately related with the Cousin groups (toroidal groups) of complex dimension and rank .